|

Do 2050 roku powinien zostać osiągnięty zerowy poziom emisji gazów cieplarnianych – wynika z dokumentu Komisji Europejskiej pt. „Czysta planeta dla wszystkich. Europejska długoterminowa wizja strategiczna dla prosperującej, nowoczesnej, konkurencyjnej i neutralnej klimatycznie gospodarki”. W ocenie Europejskiego Instytutu Miedzi, w realizacji tak ambitnego celu pomóc mogą inwestycje w wysoko wydajne technologie energetyczne oparte na miedzi.

 
Realizacja procesu transformacji energetycznej Europy, w tym polskiej gospodarki, powinna być oparta na dwóch filarach – powszechnym dostępie do odnawialnych źródeł energii (OZE) oraz dostępie do surowców, niezbędnych do wdrażania coraz bardziej efektywnych i przyjaznych dla środowiska technologii.

Materiał przyszłości
Jednym z materiałów kluczowych w tym aspekcie będzie miedź, której nasz kraj jest jednym z wiodących producentów. Właściwości miedzi, takie jak: wysoka przewodność elektryczna, trwałość czy przetwarzalność (100% zdolność do recyclingu), sprawiają, że jest niezbędna dla nowoczesnej energetyki, bazującej na odnawialnych źródłach energii. Miedź jest bowiem powszechnie wykorzystywana do produkcji wszystkich istotnych elementów infrastruktury energetycznej ‒ przewodów i kabli, wysokosprawnych urządzeń przemysłowych, silników elektrycznych i transformatorów, systemów solarnych i paneli fotowoltaicznych, generatorów czy baterii i systemów magazynowania energii.

Pomimo że miedź stosowana jest z powodzeniem w całym systemie energetycznym, to jej zalety są szczególnie doceniane w rozwoju OZE (m.in. energetyki wiatrowej, systemów solarnych i fotowoltaiki). Odgrywa też fundamentalną rolę w kontekście poprawy efektywności energetycznej, mając szerokie zastosowanie w urządzeniach elektrycznych, silnikach pojazdów elektrycznych i hybrydowych oraz w magazynach energii. Szacuje się, że wykorzystując doskonałą przewodność elektryczną miedzi, w ciągu następnych 10-20 lat w Europie będzie można zmniejszyć emisję CO2 o ponad 100 milionów ton rocznie. Zakładając, że w długofalowej perspektywie dążymy do budowania zeroemisyjnej gospodarki – miedź powinna być jej ważnym elementem.

Bezpieczeństwo zasobów
Według badań agencji United States Geological Survey, światowe rezerwy miedzi wynoszą ok. 720 mln ton, a zasoby szacuje się na przeszło 5 mld ton. Oznacza to, że powinny one wystarczyć odpowiednio na 40 lat oraz 200 lat.

Ważną rolę w dostępności miedzi odgrywa również jej recycling. Surowiec ten jest jednym z nielicznych, który może być wielokrotnie przetwarzany, bez utraty swoich właściwości lub parametrów jakościowych. Miedź odzyskiwana jest zarówno z produktów wycofywanych po zakończeniu eksploatacji, jak i z odpadów poprodukcyjnych. Obecnie w ten sposób co roku pozyskuje się ok. 8,5 mln ton tego surowca. W skali globalnej współczynnik recyclingu ze złomu miedzianego wynosi 30 proc. W Europie liczba ta jest bliższa 45 proc. Warto też dodać, że z pracujących kabli i urządzeń odzyskuje się blisko 100 proc. użytej w nich miedzi.

Priorytety na przyszłość
Pomimo rosnącego zapotrzebowania na miedź ze strony sektora OZE, dostęp do miedzi, jako jednego z kluczowych surowców, wydaje się niezagrożony. Polityka rządów oraz działania podmiotów zaangażowanych w rozwój sektora odnawialnych źródeł energii powinny więc w najbliższych latach koncentrować się na zwiększeniu efektywności, zarówno w zakresie wytwarzania energii, jak i wykorzystania miedzi, tak aby w efekcie móc systematycznie obniżać koszty dla odbiorców końcowych.

Z szacunków Europejskiego Instytutu Miedzi wynika, że każdy kilogram miedzi użyty w systemie energetycznym, w zależności od wykorzystywanej technologii, przynosi oszczędność pierwotnie wytworzonej energii od 500 do 50 000 kWh, obniżając koszty od 60 do 6 tys. EUR na poziomie UE. Pozwala to również na ograniczenie wydatków na funkcjonowanie systemu.
W ocenie Europejskiego Instytutu Miedzi w polskich warunkach optymalnym rozwiązaniem jest poprawa efektywności energetycznej oraz rozwój odnawialnych źródeł energii (OZE), w tym morskiej energetyki wiatrowej, fotowoltaki i systemów solarnych.

Pierwsze morskie elektrownie wiatrowe mogą być podłączone do krajowej sieci już w 2025 r., a do 2035 mogłyby osiągnąć moc 13-15 GW, zaspakajając ok. 20% zapotrzebowania na energię elektryczną w Polsce. Pomogłoby to, przynajmniej częściowo, rozwiązać problem deficytu energetycznego, który do tego czasu może sięgnąć 13 GW.

W Polsce zdecydowanie szybciej mógłby rozwijać się również sektor fotowoltaiki. Na koniec 2020 r. skumulowana moc we wszystkich instalacjach tego typu może przekroczyć już 1,2 GW, co oznacza wzrost o 300 proc. Tym samym fotowoltaika stanie się drugą technologią OZE o najszybszym tempie wzrostu, jednocześnie oferującą najniższe koszty produkcji energii elektrycznej. Eksperci szacują, że potencjał ten jest jeszcze większy. Niezbędne są jednak zmiany prawne ułatwiające rozwój technologii fotowoltaicznych o najkrótszych cyklach inwestycyjnych, a więc instalacji prosumenckich oraz małych farm fotowoltaicznych, które mogłyby osiągnąć pełną moc produkcyjną już w ciągu 2 lat. Pozwoliłoby to do 2020 r. zwiększyć zdolności produkcyjne o kolejne 2 GW.

Inwestycje w OZE, będą również istotne dla realizacji planów rozwoju elektromobilności 
w Polsce, w tym budowy odpowiedniej infrastruktury dystrybucyjnej oraz stacji ładowania pojazdów. To z kolei pociągnie za sobą konieczność poniesienia dodatkowych nakładów na modernizację sieci, która będzie musiała sprostać zarówno większemu zapotrzebowaniu na energię elektryczną, jak i intensywnym wahaniom częstotliwości napięcia, a przede wszystkim zapewnić możliwość magazynowania energii.

W tym kontekście za pozytywne należy uznać kierunki zmian prawnych sprzyjających rozwojowi sektora magazynowania energii w Polsce, wyodrębniające go w praktyce jako czwarty element systemu elektroenergetycznego – obok generacji, transportu (tj. przesyłu i dystrybucji) oraz zużycia. Warto jednak traktować to dopiero jako pierwszy krok w kierunku stworzenia właściwych ram regulacyjnych i struktury rynku, uwzględniających docelowo różne technologie magazynowania energii, zarówno obecne, jak i przyszłe, jeszcze nie znane. Technologie magazynowania energii są bowiem zróżnicowane i oferują wiele wartościowych zastosowań, nie tylko w kontekście sektora energii elektrycznej, ale także grzewczego, chłodzenia czy transportu.

Priorytety na przyszłość wydają się więc jasne i realne do osiągnięcia. Sukces w dużej mierze zależy jednak od naszej determinacji oraz chęci współpracy na rzecz wspólnego dobra.